
Martín Di Stefano, Josef Koller (mentor) 
ISR‐1, Los Alamos Na<onal Lab 

LANL*: Radia+on Belt Dri4 Shell Modeling 
for Real‐Time and Reanalysis Applica+ons 

Current problem motivating this work
Physics modeling of radiation belts need adiabatic
invariants (L*, µ, K). In particular L* is computationally
expensive for more sophisticated magnetic field models.

Static dipole field not accurate enough
Modern research methods use data assimilation combining
in-situ observations with models. L* location of data changes
with geomagnetic activity.

Model  Inputs  L* +me (1440 values)￼ 

Tsyganenko et al. [2003]  Dst, p, By, Bz, G2, G3  2h 31m 07s 

Tsyganenko [2002a, b]  Dst, p, By, Bz, G1, G2  3h 55m 35s 

Tsyganenko [1995, 1996]  Dst, p, By, Bz  1h 43m 56s 

Tsyganenko [1989]  Kp  4m 10s 

More accurate models are too slow
McCollough et al. (2008) compared computing times with
different models. Compiler optimizations and parallelizing
are possible but limited.

Accuracy of current field models are limited
Most popular models are empirical. Huang et al. (2008) report
ΔL* ~ 13% (quiet) and ΔL* ~ 50% during storm times.

Inaccuracies of magnetic field models could alter radial
phase-space density profiles of radiation belt electrons.

Solution: a surrogate model using a neural network
Surrogate models: polynomial regression, Kriging, neural network

* do not contain details about physical processes
* focus only on input-output relationship
* are by definition fast to compute

The results are not exact but sufficiently close to the original
model used for training.

LANL* library replaces L* from Tsyganenko T04
with a much faster neural network
The results are sufficiently accurate while reducing the
calculation time by 5-6 orders of magnitude.

The accuracy of neural network
is a function of number of nodes (N) and training samples (M).
Cybenko 1989 proved that a sufficiently large neural network
is able to approximate any function with arbitrary accuracy.

Training of neural networks
automatically adjusts weights of interconnections to produce
the desired outputs.

LANL* V2.0: a FORTRAN library

We have developed a prototype based on this technique. The
prototype is based on the Tsyganenko (T04) magnetic

field model.

The training data set consists of solar wind conditions over

nearly an entire solar cycle – from 1995 through 2005.

10,000 spacecraft locations were randomly chosen over a

3D region surrounding the earth from 1.5 Re to 10 Re.

Future work: The last closed drift shell
is a function of pitch angle and requires a separate
neural network.

The LANL* library
takes several solar wind
conditions and the satellite
coordinates to calculate L*
and the maximum valid
L* value. Additional
parameters improved the
trainability of the neural
network.

Validation results show only small error by neural
network technique
We validated the neural network with independent out-of-sample
data and show that the error by the neural network is sufficiently
small and typically less than 1%. Accuracy is reduced to
a small degree with smaller pitch angles.

LANL* V1.0 library is freely available
We have published the approach and the prototype LANL* V1.0,
which uses the Tsyganenko T01-storm model, in the
Journal for Geoscientific Model Development. The library
includes the complete neural network, Makefile for IDL and
FORTRAN, and examples.

A patent application describing this method is
currently pending.

email: mar<nd@lanl.gov, jkoller@lanl.gov 

Year 

DOY 

TAI 

Dst 

p 

By 

Bz 

W1 

W2 

Kp 

n 

v 

W1 

W2 

W3 

Dst 

p 

By 

Bz 

W1 

W2 

Dst 

p 

By 

Bz 

W1 

W2 

validaCon data outside of training period – PA 90  error in L* ‐ PA 90 

LA‐UR 09‐04881 

`

α

α

Σ Σ

hRp://www.geosci‐model‐dev.net/2/113/2009/gmd‐2‐113‐2009.html  

... 

... 

LANL* library is almost one million times
faster
Our library provides a speedup of 5-6 orders of
magnitude while providing sufficiently accurate L*
values.

Training a neural network is straightforward. Below is the
matrix vector equation to be solved when training a single-
hidden-layer neural network.

